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Optimal MPC for tracking of constrained linear systems

A. Ferramosca*, D. Limon, I. Alvarado, T. Alamo, F. Castaño and E.F. Camacho

Departamento de Ingenierı́a de Sistemas y Automática, Universidad de Sevilla, Escuela Superior
de Ingenieros, Camino de los Descubrimientos s/n, Sevilla 41092, Spain

Model predictive control (MPC) is one of the few techniques which is able to handle constraints on both state and
input of the plant. The admissible evolution and asymptotic convergence of the closed-loop system is ensured by
means of suitable choice of the terminal cost and terminal constraint. However, most of the existing results on
MPC are designed for a regulation problem. If the desired steady-state changes, the MPC controller must be
redesigned to guarantee the feasibility of the optimisation problem, the admissible evolution as well as the
asymptotic stability. Recently, a novel MPC has been proposed to ensure the feasibility of the optimisation
problem, constraints satisfaction and asymptotic evolution of the system to any admissible target steady-state.
A drawback of this controller is the loss of a desirable property of the MPC controllers: the local optimality
property. In this article, a novel formulation of the MPC for tracking is proposed aimed to recover the optimality
property maintaining all the properties of the original formulation.
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1. Introduction

Model predictive control (MPC) is one of the most

successful techniques of advanced control in the

process industry. This is due to its control problem

formulation, the natural usage of the model to predict

the expected evolution of the plant, the optimal

character of the solution and the explicit consideration

of hard constraints in the optimisation problem.

Thanks to the recent developments of the underlying

theoretical framework, MPC has become a mature

control technique capable to provide controllers ensur-

ing stability, robustness, constraint satisfaction and

tractable computation for linear and for non-linear

systems (Camacho and Bordons 2004).
The control law is calculated by predicting the

evolution of the system and computing the admissible

sequence of control inputs which makes the system

evolves satisfying the constraints. This problem can be

posed as an optimisation problem. To obtain a

feedback policy, the obtained sequence of control

inputs is applied in a receding horizon manner, solving

the optimisation problem at each sample time.

Considering a suitable penalisation of the terminal

state and an additional terminal constraint, asymptotic

stability and constraints satisfaction of the closed-loop

system can be proved (Mayne, Rawlings, Rao, and

Scokaert 2000). Moreover, if the terminal cost is the

infinite-horizon optimal cost of the unconstrained

system, then the MPC control law results to be optimal
in a neighbourhood of the steady-state. This property
is the so-called local optimality property and allows to
design finite horizon MPC controllers for constrained
system with a local optimal closed-loop performance
(Scokaert and Mayne 1998; Bemporad, Morari, Dua,
and Pistikopoulos 2002; Hu and Linnemann 2002).

Most of the results on MPC consider the regulation
problem, that is steering the system to a fixed steady-
state (typically the origin), but when the target oper-
ating point changes, the feasibility of the controller
may be lost and the controller fails to track the
reference (Rossiter, Kouvaritakis, and Gossner 1996;
Bemporad, Casavola, and Mosca 1997; Rao and
Rawlings 1999; Pannocchia and Kerrigan 2005). This
can be a consequence of one or both of the two
following causes: (i) the terminal set shifted to the new
operating point may not be an admissible invariant set,
which means that the all time feasibility property may
be lost and (ii) the terminal region at the new setpoint
could be unreachable in N steps, which means that the
optimisation problem is unfeasible, making necessary a
re-calculation of an appropriate value of the prediction
horizon to ensure feasibility. Therefore, this would
require an on-line re-design of the controller for each
set point, which can be computationally unaffordable.

For such cases, the steady-state target can be
determined by solving an optimisation problem that
determines the steady-state and input targets.
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This target calculation can be formulated as different
mathematical programs for the cases of perfect target
tracking or non-square systems (Muske 1997), or by
solving a unique problem for both situations (Rao and
Rawlings 1999). A switching strategy to recover
feasibility has been proposed in Rossiter et al. (1996)
and Chisci and Zappa (2003). This technique requires
an auxiliary controller derived from the solution of an
optimisation problem. In Bemporad et al. (1997),
Angeli, Casavola, and Mosca (2000) and Ding, Xi,
and Li (2004) the command governor approach is used
considering predictions in the calculation of the
reference at each sample time.

In Limon, Alvarado, Alamo, and Camacho (2008)
a novel MPC for tracking is proposed, which is able to
lead the system to any admissible set point in an
admissible way. The main characteristics of this
controller are: an artificial steady-state is considered
as a decision variable, a cost that penalises the error
with the artificial steady-state is minimised, an addi-
tional term that penalises the deviation between the
artificial steady-state and the target steady-state is
added to the cost function (the so-called offset cost
function) and an invariant set for tracking is considered
as extended terminal constraint. This controller
ensures that under any change of the steady-state
target, the closed-loop system maintains the feasibility
of the controller and ensures the convergence to the
target if admissible. The main drawback of the MPC
for tracking is the loss of the optimality property due
to the addition of the artificial steady-state together
with the proposed cost function.

The aim of this article is to study the property of
local optimality. The problem of optimality in MPC
was previously addressed in Scokaert and Rawlings
(1998) where the authors present a constrained LQR
and prove that there exists a finite N such that the
controller can be computed. In Bemporad et al. (2002)
a critic value of N is presented. The problem of local
optimality is studied in a more general formulation in
Hu and Linnemann (2002) where it is proved that this
property is ensured for all N and an optimality region
is computed.

In this article, a novel formulation of the MPC for
tracking is presented, considering a norm as offset cost
function. It is proved that the new formulation
recovers the local optimality property, and some
conditions are given for defining when this property
applies and characterising the regions into which this
property can apply. If the offset cost function is chosen
as a {1,1}-norm, the optimisation problem can be
written as a QP by adding a new decision variable and
a new constraint to the original optimisation problem.

This article is organised as follows. In the following
section the constrained tracking problem is stated.

In Section 3 the new MPC for tracking is presented and
in Section 4 the property of local optimality is
introduced and proved. Finally, an illustrative example
is shown.

Notation: Vector (a, b) denotes [aT, bT]T; for a given �,
�X¼ {�x : x2X}; int(X) denotes the interior of set X; a
matrix T definite positive is denoted as T4 0 and
T4P denotes that T�P4 0. For a given symmetric
matrix P4 0, kxkP denotes the weighted euclidean
norm of x, i.e. kxkP ¼

ffiffiffiffiffiffiffiffiffiffiffi
xTPx
p

. Matrix 0n,m2 IR
n�m

denotes a matrix of zeros. Consider a 2 IRna , b 2 IRnb ,
and set � � IRnaþnb , then projection operation
is defined as Projað�Þ ¼ fa 2 IRna : 9b 2 IRnb ,
ða, bÞ 2 �g. Vector u( p) is the sequence of control
action u( p)¼ {u(0; p), u(1; p), . . .}, where p is a param-
eter. u*( p) is the optimal sequence of control action.

2. Problem description

Let a discrete-time linear system be described by

xþ¼ Axþ Bu,

y ¼ CxþDu,
ð1Þ

where x2R
n the current state of the system, u2R

m the
current input, y2R

p the current output and xþ the
successor state. The state of the system and the control
input applied at sampling time k are denoted as x(k)
and u(k), respectively. The system is subject to hard
constraints on state and control

ðxðkÞ, uðkÞÞ 2 Z ð2Þ

for all k� 0. Z�R
nþm is a compact convex polyhedron

containing the origin in its interior.

Assumption 2.1: The pair (A,B) is stabilisable.

Under this assumption, the set of steady-states and
inputs of the system (1) is a m-dimensional linear
subspace of IRnþm (Alvarado 2007; Limon et al. 2008)
given by

ðxs, usÞ ¼M��:

Every pair of steady-state and input (xs, us)2 IR
nþm is

characterised by a given parameter � 2 IRn� . This
parameterisation allows us to characterise the subspace
of steady-states and inputs by a minimal number of
variables (�), which simplifies further calculations
necessary for the derivation of the proposed controller
(Limon et al. 2008).

The problem we consider is the design of an MPC
controller u ¼ kONðx, �Þ to track a piece-wise constant
sequence of set points given by �(k) in such a way that
the constraints are satisfied for all the time. The aim of
the controller is to steer the system to a target set-point
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� in an admissible way, such that it is optimal in a
neighbourhood of the target.

3. New formulation of the MPC for tracking

In Limon et al. (2008) a novel formulation of MPC for
tracking to steer the system to an admissible set-point
is presented. This controller copes with the tracking
problem by (i) considering an artificial steady-state and
input as decision variables, (ii) penalising the deviation
of the predicted trajectory with the artificial steady
conditions, (iii) adding a quadratic offset-cost function
to penalise the deviation between the artificial and the
target equilibrium point and (iv) considering an
extended terminal constraint.

In this article a new controller is proposed consid-
ering a new offset cost function based on the infinity
norm. This new offset cost is

VOð �� � �Þ ¼ kTð �� � �Þk1

with T invertible. �� is the parameter that characterises
the artificial steady-state and input (that is
ð �xs, �usÞ ¼M�

��) and � characterises the given target
operation point. In this section it will be proved that
this choice ensures the stability guarantee of the MPC
for tracking inheriting its main properties, and pro-
viding a novel and significant property: the local
optimality property.

The proposed cost function of the MPC is given by

VO
Nðx, �, u,

��Þ ¼
XN�1
i¼0

kxðiÞ � �xsk
2
Q þ kuðiÞ � �usk

2
R

þ kxðNÞ � �xsk
2
P þ kTð

�� � �Þk1 ð3Þ

and the controller is derived from the solution of the
optimisation problem PO

Nðx, �Þ given by

VO�
N ðx, �Þ ¼ min

u, ��
VO

Nðx, �, u,
��Þ, ð4aÞ

s:t: xð0Þ ¼ x, ð4bÞ

xð jþ 1Þ ¼ Axð j Þ þ Buð j Þ, ð4cÞ

ðxð j Þ, uð j ÞÞ 2 Z, j ¼ 0, . . . ,N� 1, ð4dÞ

ð �xs, �usÞ ¼M�
��, ð4eÞ

ðxðNÞ, ��Þ 2 �w
t,K: ð4fÞ

Considering the receding horizon policy, the control
law is given by

�ONðx, �Þ ¼ u�ð0;x, �Þ:

It can be easily shown that the feasibility region of

PO
Nðx, �Þ does not depend on the target operating point

�. Then there exists a polyhedral region XN such that

for all x2XN, P
O
Nðx, �Þ is feasible. This is the set of

initial states that can be admissibly steered to the

projection of �w
t,K onto x in N steps.

This optimisation problem is a convex mathemat-

ical programming problem that can be efficiently

solved by specialised algorithms (Boyd and

Vandenberghe 2006); fortunately this can be re-casted

as a standard quadratic programming problem

defining the following cost function:

VO
Nðx, �, u,

��, �Þ ¼
XN�1
i¼0

kxðiÞ � �xsk
2
Q þ kuðiÞ � �usk

2
R

þ kxðNÞ � �xsk
2
P þ �, ð5Þ

where an additional decision variable � has been

added. The optimisation problem PO
Nðx, �Þ is then

equivalent to the following quadratic programming

problem

VO�
N ðx, �Þ ¼ min

u, ��, �
VO

Nðx, �, u,
��, �Þ, ð6aÞ

s:t: xð0Þ ¼ x, ð6bÞ

xð jþ 1Þ ¼ Axð j Þ þ Buð j Þ, ð6cÞ

ðxð j Þ, uð j ÞÞ 2 Z, j ¼ 0, . . . ,N� 1, ð6dÞ

ð �xs, �usÞ ¼M�
��, ð6eÞ

ðxðNÞ, ��Þ 2 �w
t,K, ð6fÞ

kTð �� � �Þk1 � �: ð6gÞ

Remark 1: The controller can be formulated using

any norm kxkq¼ (
P
jxij

q)1/q as offset cost function.

If q¼ {1,1}, then the optimisation problem can be

formulated as a quadratic programming. Nevertheless,

the results of this article hold for any chosen norm.

The proposed controller has a set of parameters

that should be appropriately chosen. These parameters

are taken to satisfy the following assumption:

Assumption 3.1:

(1) Let Q2R
n�n and R2R

m�m be positive definite

matrices.
(2) Let T be a non-singular matrix.
(3) Let K2R

m�n be a stabilising control gain such

that (AþBK) is Hurwitz.
(4) Let P2R

n�n be a positive definite matrix

such that

International Journal of Systems Science 1267



ðAþ BKÞ 0PðAþ BKÞ � P ¼ �ðQþ K 0RKÞ,

(5) Let �w
t,K � R

nþn� be an admissible polyhedral

invariant set for tracking for system (1) subject

to (2), for the gain K (Limon et al. 2008). That

is, for all ðx, �Þ 2 �w
t,K we have that (x,Kxþ

L�)2Z and ððAþ BKÞxþ BL�, �Þ 2 �w
t,K, where

L¼ [�K, Im]M�.

In the following theorem, under the proposed

conditions on the controller parameters, asymptotic

stability and constraints satisfaction are proved for

every admissible target steady-state � satisfying

� 2 � ¼ f� : ð½In, 0	M��, �Þ 2 �w
t,K, M�� 2 Zg:

It is worth remarking that this set is potentially the set

of all admissible operating points (Limon et al. 2008).
The set of admissible steady-states and inputs

contained in the invariant set for tracking �w
t,K is

given by

Zs ¼ fðx, uÞ ¼M�� : ðx, �Þ 2 �w
t,Kg:

In what follows, notation �w
t,K is used to refer to the

invariant set for tracking in the augmented state (x, �),
while �t,K ¼ Projxð�

w
t,KÞ.

Theorem 3.2 Stability: Consider that Assumptions 2.1

and 3.1 hold and that the target operation point is such

that � 2�. Then for any feasible initial state x02XN,

the proposed MPC controller �ONðx, �Þ asymptotically

steers the system to the target operating point fulfilling

the constraints all the time.

Proof: It is assumed that the Assumption 3.1 is

satisfied.
The first part of the proof is devoted to prove the

feasibility of the controlled system, that is, x(kþ 1)2

XN, for all x(k)2XN, and �. Consider the optimal

solution of PN(x(k), �), then the successor state is

xðkþ 1Þ ¼ AxðkÞ þ B�ONðx, �Þ. Define the following

sequences:

uðxðkþ 1Þ, �Þ ¼
D
½u�ð1; xðkÞ, �Þ, . . . , u�ðN� 1;xðkÞ, �Þ,

Kðx�ðN;xðkÞ, �Þ � �x�s ðxðkÞ, �ÞÞ

þ �u�s ðxðkÞ, �Þ	

��ðxðkþ 1Þ, �Þ ¼
D ���ðxðkÞ, �Þ:

Then, ðu, ��Þ is a feasible solution for the optimisation

problem PN(x(kþ 1), �) due to the following

Propositions.

. Since x(0; x(kþ 1), �)¼ x*(1; x(k), �), then

x(i; x(kþ 1), �)¼ x*(iþ 1; x(k), �) and u(i; x

(kþ 1), �)¼ u*(iþ 1; x(k), �) for i¼ 0, 1, . . . ,

N� 1; then (x(i; x(kþ 1), �), u(i; x(kþ 1), �))2
Z for i¼ 0, 1, . . . ,N� 1.

. Since ðxðN� 1; xðkþ 1Þ, �Þ, ��ðxðkþ 1Þ, �ÞÞ 2
�w

t,K, then the control action uðN� 1;

xðkþ 1Þ, �Þ ¼ KðxðN� 1; xðkþ 1Þ, �Þ � �xsÞ þ
�us is such that (x(N� 1; x(kþ 1), �), u(N� 1;
x(kþ 1), �))2Z.

. From the invariance of �w
t,K, it derives that

ðxðN;xðkþ 1Þ, �Þ, ��ðxðkþ 1Þ, �ÞÞ 2 �w
t,K.

. Feasibility of u*(x(k), �) and admissibility of

set �w
t,K ensures the feasibility of u(x(kþ 1), �).

Convergence is derived proving that the optimal
cost is a Lyapunov function. Consider the proposed
feasible solution. Taking into account the properties of

the feasible nominal trajectories for x(kþ 1), the
condition (4) of Assumption 3.1 and using standard
procedures in MPC (Mayne et al. 2000) it is possible to
obtain

VO
Nðxðkþ 1Þ, �; u, ��Þ � VO�

N ðxðkÞ, �Þ

� �kx�ð0;xðkÞ, �Þ � �x�s ðxðkÞ, �Þk
2
Q

� ku�ð0;xðkÞ, �Þ � �u�s ðxðkÞ, �Þk
2
R

� �kx�ð0;xðkÞ, �Þ � �x�s ðxðkÞ, �Þk
2
Q:

By optimality, we have that VO�
N ðxðkþ 1Þ, �Þ �

VO
Nðxðkþ 1Þ, �; u, ��Þ and then

VO�
N ðxðkþ 1Þ, �Þ � VO�

N ðxðkÞ, �Þ

� �kx�ð0;xðkÞ, �Þ � �x�s ðxðkÞ, �Þk
2
Q:

Taking into account that Q4 0, then

lim
k!1
kx�ð0; xðkÞ, �Þ � �x�s ðxðkÞ, �Þk

2
Q ¼ 0:

From Lemma 6.1 (appendix), we can deduce that if

kx�ðxðkÞ, �Þ � �x�s ðxðkÞ, �Þk tends to 0 then k �x�s ðxðkÞ,
�Þ � xsk also tends to 0. Therefore, �x�s ðxðkÞ, �Þ tends to
xs and then x(k) tends to xs. œ

The proposed controller inherits the following

properties from the MPC for tracking (Limon et al.
2008):

Remark 2 Controller properties:

(1) Since the optimisation problem is feasible for
every value of �, the proposed controller can be
used to track a varying sequence of operating
points �(k).

(2) For any � 2� the system evolves to the target
without offset. If � =2�, the controller steers the

system to an admissible steady-state and input
ð �x�s , �u�s Þ ¼M�

��� such that

��� ¼ argmin
��2�
kTð �� � �Þk1

that is, the steady-state and input which min-
imises the offset cost function w.r.t. the target.
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This property provides a rule for the selection
of the matrix T since this characterises offset of
the plant present in permanent regime when a
non-admissible operating point is provided as
target.

(3) The structure of the equivalent optimisation
problem ensures that the proposed control law
�ONðx, �Þ is a piecewise affine function of (x, �)
that can by explicitly calculated by means of
the existing multiparametric programming
tools (Bemporad et al. 2002).

Besides these properties, the main property of the
proposed controller is its capability to guarantee the
local optimality property. The following section is
devoted to this topic.

4. Conditions for local optimality property

This section is devoted to analyse the optimality of the
proposed controller. To this aim, consider an admis-
sible control law u¼ �(x, �) and define a performance
index given by

V1ðx, �, �ð
, �ÞÞ ¼
X1
i¼0

kxðiÞ � xsk
2
Q þ k�ðxðiÞ, �Þ � usk

2
R,

ð7Þ

where x(i)¼�(i; x; �(
, �)) is calculated from the recur-
sion x( jþ 1)¼Ax( j)þB�(x( j), �) for j¼ 0, . . . , i� 1
with x(0)¼x, (x( j), u(j))2Z and (xs, us)¼M��. Then
the control law is said to be optimal if it is the one that
minimises such performance index.

Model predictive controllers can be considered as
suboptimal controllers since the cost function is only
minimised for a finite prediction horizon. The standard
MPC control law for regulating the system to the
target �, �rNðx, �Þ, can be derived from the following
optimisation problem Pr

Nðx, �Þ

Vr�
N ðx, �Þ ¼ min

u, ��

XN�1
i¼0

kxðiÞ � �xsk
2
Q þ kuðiÞ � �usk

2
R

þ kxðNÞ � �xsk
2
P, ð8aÞ

s:t: xð0Þ ¼ x, ð8bÞ

xð jþ 1Þ ¼ Axð j Þ þ Buð j Þ, ð8cÞ

ðxð j Þ, uð j ÞÞ 2 Z, j ¼ 0, . . . ,N� 1, ð8dÞ

ð �xs, �usÞ ¼M�
��, ð8eÞ

ðxðNÞ, ��Þ 2 �w
t,K, ð8fÞ

kTð �� � �Þk1 ¼ 0: ð8gÞ

This optimisation problem is feasible in the polyhedral

region X r
Nð�Þ, where the control law is defined. Then

the solution to the problem Pr
Nðx, �Þ with N¼1 yields

to the constrained LQR control law �1(x, �) which is

the admissible control law that minimises V1(x, �,
�(x)), that is, the controller that provides the best

performance according to the given quadratic index.
It would be desirable to calculate the optimal

control law �1(x, �), but its calculation may be

computationally unaffordable. Fortunately the follow-

ing lemma demonstrates that if the terminal cost

function is the optimal cost of the unconstrained LQR,

then the resulting finite horizon MPC equals the

constrained LQR in a neighbourhood of the terminal

region (Scokaert and Rawlings 1998; Bemporad et al.

2002; Hu and Linnemann 2002).

Lemma 4.1: Consider that Assumptions 2.1 and 3.1

hold. Consider that the control gain K is equal to the

unconstrained LQR gain KLQR and define the set

�N(�)� IRn as

�Nð�Þ ¼ f �x 2 IRn : ð�ðN; �x, �1ð
, �Þ, �Þ 2 �w
t,Kg: ð9Þ

Then for all x2�N(�), Vr�
N ðx, �Þ ¼ V1ðx, �Þ and

�rNðx, �Þ ¼ �1ðx, �Þ.
This lemma directly stems from Hu and Linnemann

(2002, Theorem 2).

Unfortunately, the MPC for tracking proposed in

Limon et al. (2008) does not guarantee that this

remarkable property holds due to the artificial steady-

state and input considered as decision variables. In this

section we show that this optimality loss is derived

from the quadratic nature of the offset cost function

and the new controller can recover the local optimality

property thanks to the considered 1-norm offset cost

function. In what follows, it is first proved that the

MPC for tracking proposed in this article is equal to

the MPC for regulation, and then that the MPC for

regulation is optimal, in the sense that it ensures the

property of local optimality.

Lemma 4.2: Consider that Assumptions 2.1 and 3.1

hold. For all x 2 X r
Nð�Þ, there exists a matrix T such that

the proposed MPC for tracking equals to the MPC for

regulation, that is �ONðx, �Þ ¼ �
r
Nðx, �Þ and VO�

N ðx, �Þ ¼
Vr�

N ðx, �Þ.

Proof: Define the following optimisation problem

Pm
Nðx, �;�Þ, given by
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Vm�
N ðx, �,�Þ ¼ min

u, ��

XN�1
i¼0

kxðiÞ � �xsk
2
Q þ kuðiÞ � �usk

2
R

þ kxðNÞ � �xsk
2
P þ �k

�� � �k1,

s:t: xð0Þ ¼ x,

xð jþ 1Þ ¼ Axð j Þ þ Buð j Þ,

ðxð j Þ, uð j ÞÞ 2 Z, j ¼ 0, . . . ,N� 1,

ð �xs, �usÞ ¼M�
��,

ðxðNÞ, ��Þ 2 �w
t,K:

This optimisation problem Pm
Nðx, �; �Þ is derived from

the optimisation problem Pr
Nðx, �Þ with the last con-

straint posed as an exact penalty function (Luenberger

1984). Therefore, there exist a finite constant �4 0

such that Vm�
N ðx, �Þ ¼ Vr�

N ðx, �Þ (Luenberger 1984; Boyd
and Vandenberghe 2006).

Assume that the matrix T in the optimisation

problem PO
Nðx, �Þ satisfies kT�1k1� (�n�)

�1. Then,

using the properties of the norms, we have that

kTð �� � �Þk1 �
1

kT�1k1n�
k �� � �k1 � �k �� � �k1:

Consequently, we have that VO
Nðx, �, u,

��, �Þ �
Vm

Nðx, �, u,
��, �Þ which implies that VO�

N ðx, �Þ � Vm�
N

ðx, �Þ ¼ Vr�
N ðx, �Þ.

On the other hand, for all x 2 X r
Nð�Þ the optimisers

of the optimisation problem Pr
Nðx, �Þ are a feasible

solution of PO
Nðx, �Þ, and hence Vr�

N ðx, �Þ � VO�
N ðx, �Þ.

Then, combining these results we have that for all

x 2 X r
Nð�Þ,

Vr�
N ðx, �Þ � VO�

N ðx, �Þ � Vm�
N ðx, �Þ ¼ Vr�

N ðx, �Þ

and hence Vr�
N ðx, �Þ ¼ VO�

N ðx, �Þ. œ

Remark 1: In virtue of the well-known result on the

exact penalty functions (Luenberger 1984), the con-

stant � can be chosen such that k�(x, �)k1��, where
�(x, �) is the Lagrange multiplier of the equality

constraint kTð �� � �Þk1 ¼ 0 of the optimisation pro-

blem Pr
Nðx, �Þ. Since the optimisation problem depends

on the parameters (x, �), the value of this Lagrange

multiplier also depends on (x, �).

Remark 2: The local optimality property can be

ensured using any norm, thanks to the property of

equivalence of the norms, that is 9c4 0 such that

kxkq� ckxk1. Otherwise, the square of a norm cannot

be used. With the k:k2q norm, in fact, there will be

always a local optimality gap for a finite value of

� since k:k2q is a (not exact) penalty function

(Luenberger 1984). That gap can be reduced by

means of a suitable penalisation of the offset cost
function (Alvarado 2007).

Remark 3: In Ferramosca, Limon, Alvarado, Alamo,
and Camacho (2009) the MPC for tracking is extended
considering a general offset cost function. Convergence
to a set-point which minimises the offset cost function
is ensured considering only a convex, positive definite
and subdifferential function. Moreover, the proposed
MPC for tracking deals with the case that the target is
inconsistent with the prediction model or the con-
straints. If this function can be bounded above by
ckxk1, then the results presented in this article can be
applied.

Some questions arise from this result as how a
suitable value of the parameter � can be determined for
all possible set of parameters. Another issue is if there
exists a region where local optimality property holds
for a given value of �. The following section, in which
these issues are analysed, constitutes a contribution of
this article.

4.1. Characterisation of the region of local optimality
and calculation of T

From the previously presented results, it can be seen
that this issue can be studied by characterising the
region where the norm of the Lagrange multiplier
�(x, �) is lower than or equal to �. Once this region is
determined, the open questions on the local optimality
can be answered. The characterisation of this region is
done by means of results of multiparametric quadratic
programming problems (Bemporad et al. 2002).

To this aim, first, note that the optimisation
problem Pr

Nðx, �Þ is a multiparametric problem and
the set of parameters (x, �) such that Pr

Nðx, �Þ is feasible
is given by � ¼ fðx, �Þ : x 2 X r

Nð�Þg. It can be proved
that this set is a polytope.

This optimisation problem can be casted as a
multiparametric quadratic programming (mp-QP)
problem (Bemporad et al. 2002) in the set of the
parameters (x, �)2�, which can be defined as

min
z

1

2
z 0Hz

s:t: Gz �Wþ S1xþ S2�,

Fz ¼ Yþ T1xþ T2�,

ð10Þ

where

z ¼
u
��

� �
þ J1xþ J2� ð11Þ

with J1 and J2 suitable matrices. Gz�WþS1xþS2�
describes the restrictions (8b)–(8f), and Fz¼Yþ
T1xþT2� is the only equality constraint represented
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by Equation (8g). Note thatH4 0, then the problem is

strictly convex.
The Karush–Kuhn–Tucker (KKT) optimality

conditions (Boyd and Vandenberghe 2006) for this

problem are given by

Hzþ G 0�þ F 0� ¼ 0, ð12aÞ

�ðGz�W� S1x� S2�Þ ¼ 0, ð12bÞ

� � 0, ð12cÞ

Gz�W� S1x� S2� � 0, ð12dÞ

Fz� Y� T1x� T2� ¼ 0: ð12eÞ

Solving (12a) for z and substituting in the other

equations, we obtain a new set of constraints for the

Lagrange dual problem associated with the problem

(10) which depends on (�, �, x, �). Then the following

region

D ¼ ð�, �,x, �Þ :

� 0ðGH�1G 0�þGH�1F 0�þW

þS1xþ S2�Þ ¼ 0 � � 0

�ðGH�1G 0�þGH�1F 0�þW

þS1xþ S2�Þ � 0

FH�1G 0�þ FH�1F 0�þYþT1x

þT2� ¼ 0

���������������

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ð13Þ

defines the set of (�, �, x, �) which is solution of the

KKT conditions. Thus, for any (x, �)2Proj(x,�)D, the
solution of the KKT equations is (�(x, �), �(x, �)) such
that (x, �, �(x, �), �(x, �))2D. Note that Proj(x,�)D is the

set of (x, �) where a feasible solution exists and hence

Proj(x,�)D¼� and it is polytope (Boyd and

Vandenberghe 2006).
Following the same arguments of Bemporad et al.

(2002), the finite number of inequality constraints

makes that there exists a finite combination of possible

active constraints. Consider the jth combination and

assume that ��j and ~�j denote the Lagrange multipliers

vectors set of inactive and active inequality constraints,

respectively. Let �Gj, �Wj, �Sj
1,

�Sj
2, and

~Gj, ~Wj, ~Sj
1,

~Sj
2 be

the corresponding matrices derived from a suitable

partition of matrices G, W, S1 and S2 for the set of

inactive and active constraints. In virtue of the

complementary slackness condition, we have that
��j ¼ 0 for inactive constraints and ~GjH�1 ~G 0j ~�jþ
~GjH�1F 0�þ ~Wj þ ~Sj

1xþ
~Sj
2� ¼ 0 for active constraints.

Then, the jth combination of active constraints remains

active for every (x, �, �, �) contained in the following

polyhedral region:

Dj¼ ð�,�,x,�Þ : �¼ ð ~�j, ��j Þ

8>>>>>>>>><
>>>>>>>>>:
��j¼ 0

~�j� 0, j¼ 1, . . . ,N

�GjH�1F 0�þ �Wjþ �S1
jxþ �S2

j�40

~�j¼�ð ~GjH�1 ~G 0jÞ�1ð ~GjH�1F 0�þ ~Wjþ ~Sj
1xþ

~S j
2�Þ

FH�1 ~G 0j ~�jþFH�1F 0�þYþT1xþT2�¼ 0

����������������

9>>>>>>>>>>=
>>>>>>>>>>;
:

ð14Þ

It is clear that the union of every region Dj of a
possible combination of active constraints is such that
D ¼

S
j Dj and hence D is a polygon.

Using these results, the maximum and the mini-
mum value of k�(x, �)k1 for all possible values of (x, �)
can be computed, that is, the values of �min and �max

such that for all (x, �)2�, �min�k�(x, �)k1��max.
These are calculated by solving the following
optimisation problems:

�max ¼ max
ðx,�,�,�Þ2D

k�k1 ¼ max
j

sup
ðx,�,�,�Þ2Dj

k�k1

 !
, ð15Þ

�min ¼ min
ðx,�,�,�Þ2D

k�k1 ¼ min
j

inf
ðx,�,�,�Þ2Dj

k�k1

� �
: ð16Þ

It is remarkable that each supremum and infimum can
be calculated by solving a set of linear programming
(LP) problems in the closure of Dj. Besides, since the
optimisation problem Pr

Nðx, �Þ is such that the solution
of the KKT conditions is unique, then the value of
�max is finite.

We are also interested in characterising the set of
(x, �), �(�), such that the norm of the associate
Lagrange multiplier �(x, �) is bounded by �, that is

�ð�Þ ¼ fðx, �Þ : 9ð�, �Þ s.t. ð�, �, x, �Þ 2 D and k�k1 � �g:

This region can be characterised by means of the
polyhedral partition of D. Defining the set �j(�)¼ {(x,
�) : 9(�, �) s.t. (�, �, x, �)2Dj and k�k1��}, which is a
polyhedron, it can be seen that �(�) is a polygon given
by �ð�Þ ¼

S
j �j ð�Þ. Note that set �(�) is non-empty

for �4�min. Moreover, if �min5�a��b, then for all
(x, �)2�(�a), k�(x, �)k1��a��b and hence
(x, �)2�(�b). Therefore, �(�a)��(�b).
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Resorting to the previously presented results, the

following lemma can be derived.

Lemma 4.3: Consider that Lemma 4.2 holds. Let �max

and �min be the solutions of (15) and (16), respectively,

then:

. for all �4�min, there exists a polygon �(�)
such that if (x, �)2�(�) and kT�1k1 �

1
�n�

, then

Vr
Nðx, �Þ ¼ VO

Nðx, �Þ;
. for all �min5�a��b, �(�a)��(�b), that is,

�(�) grows monotonically with �;
. for all ���max, �(�)¼Proj(x,�)D¼�.

In the following theorem, the property of local

optimality for the MPC for tracking is stated.

Theorem 4.4 Local optimality: Consider that Lemmas

4.2 and 4.3 hold. Define the following region

Wð�, �Þ ¼ fx 2 �Nð�Þ : ð�ði; x, �
O
Nð
, �ÞÞ, �Þ

2 �ð�Þ, 8i � 0g

and let the terminal control gain K be the one of the

unconstrained LQR. Then

(1) for all �4�min,W(�, �) is a non-empty polygon

and it is a positively invariant set of the

controlled system;
(2) if �min5�a��b, then W(�a, �)�W(�b, �);
(3) if �4�min, kT

�1
k1� (�n�)

�1 and x(0) and � are
such that xð0Þ 2 X r

Nð�Þ, then

(a) there exists an instant �k such that

xð �kÞ 2 Wð�, �Þ and �ONðxðkÞ, �Þ ¼ �1ðxðkÞ, �Þ
for all k � �k;

(b) if �� �max then �ONðxðkÞ, �Þ ¼ �
r
NðxðkÞ, �Þ for

all k� 0 and there exist an instant �k such that

xð �kÞ 2 �Nð�Þ and �ONðxðkÞ, �Þ ¼ �1ðxðkÞ, �Þ
for all k � �k.

Proof:

. From Lemma 4.1 we have that set �N(�) is an
invariant set for the system controlled by

u ¼ �rNðx, �Þ and besides, �rNðx, �Þ ¼ �1ðx, �Þ.
Since the control law �rNðx, �Þ is a piece-wise

affine (PWA) function of (x, �), the controlled
system is PWA and the region �N(�) is a

polygon (Kerrigan 2000).
On the other hand, set �ð�, �Þ ¼ fx :

ð�ði;x, �ON ð
, �ÞÞ, �Þ 2 �ð�Þ, 8i � 0g is the

maximum invariant set for the controlled

system contained in the set {x : (x, �)2�(�)}
and besides in virtue of Lemma 4.3 for all

x2�(�, �), �ONðx, �Þ ¼ �
r
Nðx, �Þ. The PWA

nature of the control law ensures that �(�, �)
is a polygon.

Finally, noting that W(�, �)¼�N(�)\
�(�, �), we infer that W(�, �) is a positively

invariant polygonal set for the system con-

trolled by �ONðx, �Þ and for all x2W(�, �),
�ONðx, �Þ ¼ �

r
Nðx, �Þ ¼ �1ðx, �Þ.

. Since �a��b, �(�a)��(�b). In virtue of the

monotonicity of the maximal invariant set,

�(�a,�)��(�b, �) and this implies that

W(�a, �)�W(�b, �).
. If xð0Þ 2 X r

Nð�Þ, then the closed-loop system is

asymptotically stable to (xs, us)¼M��. Given

that W(�, �) has a non-empty interior and

xs2W(�, �) for any �4�min, there exist a �k

when xð �kÞ 2 Wð�, �Þ. Due to the invariance of

W(�, �), x(k)2W(�, �) for all k � �k. Taking

into account Lemmas 4.2 and 4.3,

kONðxðkÞ, �Þ ¼ k1ðxðkÞ, �Þ.
. From Lemma 4.3, for all ���max �(�)¼�,

�ð�, �Þ ¼ X r
Nð�Þ and then W(�, �)¼�N(�).

The result is derived from the last proposition.

œ

From this theorem it can be inferred that for every

T such that kT�1k1� (�min n�)
�1, the MPC for tracking

is locally optimal in a certain region. In particular, the

value of �min is interesting from a theoretical point of

view, because it is the critical value from which there

exists a region of local optimality. In order to ensure

the local optimality property of the standard MPC,

one would like to know the maximal region into which

the local optimality applies. This region is given for

any ���max. Then, from a practical point of view it is

interesting to know �max, but this requires the calcu-

lation of the partition of the feasibility region of the

mpQP and the solution of a number of LPs. In the

following corollary a method is proposed to calculate a

value of ���min for which the local optimality region

is the invariant set for tracking, by means of a

single LP.

Corollary 4.5: Consider that hypotheses of Theorem

4.4 hold. Let �� be the solution of the following LP

optimisation problem:

�� ¼ max
x,�
kðFH�1F 0Þ�1ðYþ T1xþ T2�Þk1,

s:t: ðx, �Þ 2 �w
t,K: ð17Þ

Assume that kT�1k1� (��n�)
�1 then for all xð0Þ 2

X r
Nð�Þ, there exists an instant �k such that

VO�
N ðxðkÞ, �Þ ¼V

�
1ðxðkÞ, �Þ and �

O
NðxðkÞ, �Þ ¼ �1ðxðkÞ, �Þ,

for all k � �k.

Proof: Assume that no inequality constraint is active,

then the Lagrange multiplier � is zero. In this case,

1272 A. Ferramosca et al.



the KKT conditions are

�GH�1F 0��W� S1x� S2�5 0,

�FH�1F 0�� Y� T1x� T2� ¼ 0:

For any ðx, �Þ 2 intð�w
t,KÞ, the optimal control law is

the one of the unconstrained LQR, that is u¼KLQR

(x� xs)þ us, where (xs, us)¼M� �, such that
(x, u)2 int(Z). This means that no inequality constraint
is active. Considering that u¼KLQR(x�xs)þ us is the
optimal control law of the unconstrained LQR, then
for any ðx, �Þ 2 intð�w

t,KÞ, k
O
Nðx, �Þ ¼ KLQRðx� xsÞ þ us

and x2�N(�). Furthermore, for any ðxð �kÞ, �Þ 2
intð�w

t,KÞ, ðxðkÞ, �Þ 2 intð�w
t,KÞ for any

�k � k.
Hence, for any ðx, �Þ 2 intð�w

t,KÞ, �(x, �)¼ 0, and then
�(x, �)¼�[(FH�1F 0)�1(YþT1xþT2�)]. Moreover,
k�(x, �)k1���, for any ðx, �Þ 2 intð�w

t,KÞ.
Taking into account all these facts, if ����, then

for any x(0)2XN, there exists a �k4 0 such that
ðxð �kÞ, �Þ 2 intð�w

t,KÞ, and hence kONðx, �Þ is the optimal
control law. œ

5. Example

5.1. The two tank process

We considered two cascaded tanks system of the four
tank process located at the Departamento de Ingenierı́a
de Sistemas y Automática at the Engineering School of
the University of Seville (Alvarado 2007). A scheme of
the system is presented in Figure 1. The nonlinear
model of the system is

dh1
dt
¼ �

a1
A


ffiffiffiffiffiffiffiffiffiffi
2gh1

p
þ
a3
A


ffiffiffiffiffiffiffiffiffiffi
2gh3

p
þ
�

A

 q,

dh3
dt
¼ �

a3
A


ffiffiffiffiffiffiffiffiffiffi
2gh3

p
þ
1� �

A

 q,

where h1 and h3 are the levels of water in each tank and
q is the inlet flow. The cross-section of the tanks is
A¼ 0.06m2, the cross-sections of the outlets are
a1¼ 6.7371e�4m2 and a2¼ 4.0423e�4m2, and �¼ 0.4
(Alvarado 2007).

Linearissing the model in an operating point given
by h01 ¼ 0:68m, h03 ¼ 0:65m and q0¼ 2m3/h, and
defining the variables xi ¼ hi � hoi and u¼ q� qo

where i¼ 1, 3 we have that

dx

dt
¼

�1
	1

1
	3

0 �1
	3

" #
xþ

�
A

1��
A

" #
u,

y ¼
1 0

0 1

� �
x,

where 	i ¼
A
ai

ffiffiffiffiffi
2h0

i

g

q
� 0, i¼ 1, 3, are the time constants of

each tank.

The system is constrained to 0.30� x1� 1.36,
0.30� x2� 1.30 and 0� u� qmax, where qmax¼ 4. The
properties of the controller have been illustrated by
means of simulations of the system.

In order to show the property of offset minimisa-
tion (Section 3, Remark 2) of the controller, the aim of
the first test is to demonstrate the tracking property of
the proposed controller. The offset cost function has
been chosen as VO ¼ kTð �� � �Þk1. In the test, three
references have been considered. The first reference
and the second reference, Ref1¼ (1.2, 1.17) and
Ref2¼ (0.4, 0.39), are admissible set-points. The third
reference, Ref3¼ (0.8, 1), is a not consistent operation
point. The initial state is x0¼ (0.32, 1.26). An MPC
with N¼ 3 has been considered. The weighting matri-
ces have been chosen as Q¼ I2 and R¼ 100� I1.
Matrix P is the solution of the Riccati equation and
T¼ �I1.

The maximal invariant set for tracking �t,K, the
region of attraction X3, the set of equilibrium levels
X s¼Projx(Zs) and the evolution of the levels for a
given reference are shown in Figure 2(a). The time
evolution of the system is shown in Figure 2(b). As it
can be seen, since Ref1 is an admissible set-point, the
system reaches the first reference without any offset.
At the sample times 500 the reference changes but the
system still reaches the point without any offset, since
Ref2 is an admissible set-point. At time 1000 the
reference changes, becoming a not consistent point.
Note how the controller leads the system to the closest
equilibrium point, in the sense that the offset cost
function is minimised.

To illustrate the property of the local optimality,
the proposed controller has been compared with the
MPC for tracking with quadratic offset cost proposed
in (Limon et al. 2008) and with the LQR. First, the
difference between the MPC for tracking with qua-
dratic offset cost V�N and the MPC for tracking with
1-norm offset cost VO�

N , with the MPC for regulation

Figure 1. The two tanks system.
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Vr�
N are illustrated, that are Vr�

N � VO�
N and Vr�

N � V�N.
To this aim, the quadratic offset cost function has been
chosen as k �� � �k2Tp

with Tp ¼ �M
T
xPMx, where

Mx¼ [In, 0n�m]M�. The system has been considered to
be steered to the point x¼ (0.4, 0.39). In Figure 3 the
value of Vr�

N � VO�
N versus � is plotted in solid line and

the value of Vr�
N � V�N versus � in dashed line.

As it can be seen, Vr�
N � V�N tends to zero asymptot-

ically while Vr�
N � VO�

N drops to (practically) zero
dramatically for a certain value of �. This result
shows that the optimality gap can be made arbitrarily
small by means of a suitable penalisation of the square
of the 2 norm, and this value asymptotically converge
to zero (Alvarado 2007), while in the case of the 1-
norm, the difference between the optimal value of the
MPC for tracking cost function and the standard MPC
for regulation cost function becomes zero. This shows
the benefit of the new formulation of the MPC for
tracking. Note how the value of Vr�

N � VO�
N drops to

practically zero when �¼ 47. As we said, in Section 4,
this happens because the value of � becomes greater

than the value of the Lagrange multiplier of the
equality constraint of the regulation problem Vr�

N .
To point out this fact, consider that, for this example,
the value of the Lagrange multiplier of the equality
constraint of the regulation problem Vr�

N , is
�max¼ 46.1772. The value of ��, calculated by solving
problem (17), is ��¼ 46.1772. This value is equal to the
value of �max because the region D into which the value
of �max can be evaluated, is exactly the invariant set for
tracking �w

t,K. In the table, the value of Vr�
N � VO�

N in
case of different values of the parameter � is presented.
Note how the value seriously decrease when � becomes
equal to �max. So, using the procedure described in
Section 4, we can determine the value of �max such that
VO�

N ðx, ytÞ ¼ Vr�
N ðx, ytÞ.

To definitely prove the optimal performances
ensured by the proposed controller, the optimal
trajectories from the point x0¼ (0.32, 1.26) to the
point x¼ (0.4, 0.39) have been calculated, for a value
of � that varies in the set �¼ {5, 10, 15, 20, 25, 30, 35,
40, 45, �max}. In Figure 4 the state-space trajectories
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Figure 2. State-space and time evolutions. (a) Evolution of the levels and (b) Time evolution of the plant.

0 10 20 30 40 50 60 70 80 90 100
−50

−40

−30

−20

−10

0

10

α

lo
g 1

0(
V

N
* –

V
N

   
 )

r*
O

*

α V r∗
N − V O∗

N

45 0.0111
46 2.51e − 4

46.1 4.77e − 5
46.17 4.09e − 7
46.177 1.60e − 10
46.1772 0

47 0
48 0

Figure 3. Difference between the regulation cost and the tracking cost versus �.
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and the values of the optimal cost V1 for � increasing
are shown. See how the trajectories get better and how
the value of the optimal cost decreases as the value of �
increases. The optimal trajectory, in solid line, is the
one for which �¼ �max. Notice that value of the
optimal cost decreases from V1¼ 203.6146 to
V1¼ 24.8735 when � reaches the value of �max.

References

Alvarado, I. (2007), ‘Model Predictive Control for Tracking

Constrained Linear Systems’, Ph.D. Thesis, University de
Sevilla.

Angeli, D., Casavola, A., and Mosca, E. (2000), ‘Predictive
PI-control of Linear Plants Under Positional and

Incremental Input Saturations’,Automatica, 36, 1505–1516.
Bemporad, A., Casavola, A., and Mosca, E. (1997),

‘Nonlinear Control of Constrained Linear Systems via

Predictive Reference Management’, IEEE Transactions on
Automatic Control, 42, 340–349.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E.
(2002), ‘The Explicit Linear Quadratic Regulator for

Constrained Systems’, Automatica, 38, 3–20.
Boyd, S., and Vandenberghe, L. (2006), Convex

Optimization, Cambridge: Cambridge University Press.
Camacho, E.F., and Bordons, C. (2004), Model Predictive

Control (2nd ed.), London, UK: Springer-Verlag.
Chisci, L., and Zappa, G. (2003), ‘Dual Mode Predictive

Tracking of Piecewise Constant References for Constrained

Linear Systems’, International Journal of Control, 76, 61–72.
Ding, B., Xi, Y., and Li, S. (2004), ‘A Synthesis Approach of

On-line Constrained Robust Model Predictive Control’,
AUT, 40, 163–167.

Ferramosca, A., Limon, D., Alvarado, I., Alamo, T., and
Camacho, E.F. (2009), ‘MPC for Tracking with Optimal

Closed-loop Performance’, Automatica, 45, 1975–1978.
Hu, B., and Linnemann, A. (2002), ‘Towards Infinite-

horizon Optimality in Nonlinear Model Predictive

Control’, IEEE Transactions on Automatic Control, 47,
679–682.

Kerrigan, E.C. (2000), ‘Robust Constraint Satisfaction:

Invariant Sets and Predictive Control’, Ph.D. Thesis,

University of Cambridge.
Limon, D., Alvarado, I., Alamo, T., and Camacho, E.F.

(2008), ‘MPC for Tracking of Piece-wise Constant

References for Constrained Linear Systems’, Automatica,

44, 2382–2387.

Luenberger, D.E. (1984), Linear and Nonlinear Programming,

Reading, Massachusets, USA: Addison-Wesley.
Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,

P.O.M. (2000), ‘Constrained Model Predictive Control:

Stability and Optimality’, Automatica, 36, 789–814.
Muske, K. (1997), ‘Steady-state Target Optimization in

Linear Model Predictive Control’ in Proceedings of the

American Control Conference, ACC’97, Albuquerque,

New Mexizo, USA, June 4–6, 1997.

Pannocchia, G., and Kerrigan, E. (2005), ‘Offset-free

Reciding Horizon Control of Constrained Linear

Systems’, AIChE Journal, 51, 3134–3146.
Rao, C., and Rawlings, J. (1999), ‘Steady States and

Constraints in Model Predictive Control’, AIChE

Journal, 45, 1266–1278.
Rossiter, J., Kouvaritakis, B., and Gossner, J. (1996),

‘Guaranteeing Feasibility in Constrained Stable

Generalised Predictive Control’, IEEE Proceedings of

Control theory Applications, 143, 463–469.

Scokaert, P.O.M., and Mayne, D.Q. (1998), ‘Min-max

Feedback Model Predictive Control for Constrained

Linear Systems’, IEEE Transactions on Automatic

Control, 43, 1136–1142.
Scokaert, P.O.M., and Rawlings, J.B. (1998), ‘Constrained

Linear Quadratic Regulator’, IEEE Transactions on

Automatic Control, 43, 1163–1169.

Appendix

Lemma A.1: Let the Assumptions of Theorem 3.2 hold.
Consider a desired steady-state (xs, us)¼M�� and assume
that for a given state x, the optimal solution of PO

Nðx, �Þ is
such that kx� �x�s ðx, �ÞkQ ¼ 0 (i.e. x ¼ �x�s ðx, �Þ), then
kx� xskQ¼ 0.
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Figure 4. State-space trajectories and optimal cost for � varying.
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Proof: The proof is obtained by contradiction. Consider
��� ¼ ���ðx, �Þ and ð �x�s , �u�s Þ ¼M�

���. Assume that �x�s 6¼ xs.
By continuity we obtain that exists �̂ 2 ½0, 1Þ such that for

every � 2 ½�̂, 1Þ, ~� ¼ � ��� þ ð1� �Þ� and ð ~xs, ~usÞ ¼M�
~�, the

state �x�s is contained in the maximal admissible invariant set
(denoted as �1ð ~xsÞ) for the nominal system controlled by
u ¼ Kðx� ~xsÞ þ ~us (Limon et al. 2008).

Defining as u the sequence of control actions derived
from this control law, it is inferred that ðu, �x�s ,

~�Þ is a feasible
solution for PNð �x

�
s , �Þ. Then, from Assumption 3.1,

VO�
N ð �x

�
s , �Þ � VO

Nð �x
�
s , �; u,

~�Þ ¼ k �x�s � ~xsk
2
P þ kTð

~� � �Þk1:

Defining Mx¼ [In, 0n�m]M� and taking into account
that �x�s � ~xs ¼ ð1� �ÞMxð ��

� � �Þ and ~� � � ¼ �ð ��� � �Þ,

we have that

k �x�s � ~xsk
2
P þ kTð

~� � �Þk1 � ð1� �Þ
2
kMxð ��

� � �Þk2P

þ �kTð ��� � �Þk1:

Note that the rhs of this equation takes a value of
kTð ��� � �Þk1 for �¼ 1, and besides, its derivative w.r.t. � for
�¼ 1 is also equal to kTð ��� � �Þk1 which is assumed to be
strictly positive (namely ��� 6¼ �). Then there exists a ~� 2 ð0, 1Þ
such that for all � 2 ½ ~�, 1Þ, we have that

VO�
N ð �x

�
s , �Þ � k �x�s � ~xsk

2
P þ kTð

~� � �Þk15 kTð ��� � �Þk1:

Since the optimal solution of PNð �x
�
s , �Þ is given by

u�ð �x�s , �Þ ¼ fu
�
s , . . . , u�s g and the associated nominal state

sequence is x�ð �x�s , �Þ ¼ f �x
�
s , . . . , �x�s g, then the optimal cost

is VO�
N ð �x

�
s , �Þ ¼ kTð

��� � �Þk1, yielding a contradiction and
proving the lemma. œ
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